Exercise 11

Use mathematical induction to show that when $n=2,3, \ldots$,

$$
\text { (a) } \overline{z_{1}+z_{2}+\cdots+z_{n}}=\overline{z_{1}}+\overline{z_{2}}+\cdots+\overline{z_{n}} ; \quad \text { (b) } \overline{z_{1} z_{2} \cdots z_{n}}=\overline{z_{1}} \overline{z_{2}} \cdots \overline{z_{n}}
$$

Solution

Part (a)
Start by showing that the result holds in the base case $n=2$.

$$
\overline{z_{1}+z_{2}}=\overline{z_{1}}+\overline{z_{2}}
$$

This is property (2) in the text, which has been shown to be true. Now assume the inductive hypothesis,

$$
\overline{z_{1}+z_{2}+\cdots+z_{k}}=\overline{z_{1}}+\overline{z_{2}}+\cdots+\overline{z_{k}},
$$

and show that

$$
\overline{z_{1}+z_{2}+\cdots+z_{k}+z_{k+1}}=\overline{z_{1}}+\overline{z_{2}}+\cdots+\overline{z_{k}}+\overline{z_{k+1}} .
$$

Do so by grouping the first k terms, using the base case, and then using the inductive hypothesis.

$$
\begin{aligned}
\overline{z_{1}+z_{2}+\cdots+z_{k}+z_{k+1}} & =\overline{\left(z_{1}+z_{2}+\cdots+z_{k}\right)+z_{k+1}} \\
& =\overline{z_{1}+z_{2}+\cdots+z_{k}}+\overline{z_{k+1}} \\
& =\overline{z_{1}}+\overline{z_{2}}+\cdots+\overline{z_{k}}+\overline{z_{k+1}}
\end{aligned}
$$

Therefore, by mathematical induction,

$$
\overline{z_{1}+z_{2}+\cdots+z_{n}}=\overline{z_{1}}+\overline{z_{2}}+\cdots+\overline{z_{n}}
$$

Part (b)

Start by showing that the result holds in the base case $n=2$.

$$
\overline{z_{1} z_{2}}=\overline{z_{1}} \overline{z_{2}}
$$

This is property (4) in the text, which has been shown to be true. Now assume the inductive hypothesis,

$$
\overline{z_{1} z_{2} \cdots z_{k}}=\overline{z_{1}} \overline{z_{2}} \cdots \overline{z_{k}},
$$

and show that

$$
\overline{z_{1} z_{2} \cdots z_{k} z_{k+1}}=\overline{z_{1}} \overline{z_{2}} \cdots \overline{z_{k}} \overline{z_{k+1}} .
$$

Do so by grouping the first k terms, using the base case, and then using the inductive hypothesis.

$$
\begin{aligned}
\overline{z_{1} z_{2} \cdots z_{k} z_{k+1}} & =\overline{\left(z_{1} z_{2} \cdots z_{k}\right) z_{k+1}} \\
& =\overline{z_{1} z_{2} \cdots z_{k}} \overline{z_{k+1}} \\
& =\overline{z_{1}} \overline{z_{2}} \cdots \overline{z_{k}} \overline{z_{k+1}}
\end{aligned}
$$

Therefore, by mathematical induction,

$$
\overline{z_{1} z_{2} \cdots z_{n}}=\overline{z_{1}} \overline{z_{2}} \cdots \overline{z_{n}} .
$$

